РОССИЙСКАЯ ФЕДЕРАЦИЯ

(19)

(11)

2 848 737⁽¹³⁾ C1

4

 ∞

(51) M_ПK **C22C 30/00** (2006.01) C22C 38/00 (2006.01) C22C 22/00 (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(52) CIIK

C22C 30/00 (2025.08); C22C 38/00 (2025.08); C22C 22/00 (2025.08)

(21)(22) Заявка: 2025106662, 20.03.2025

(24) Дата начала отсчета срока действия патента: 20.03.2025

Дата регистрации: 21.10.2025

Приоритет(ы):

(22) Дата подачи заявки: 20.03.2025

(45) Опубликовано: 21.10.2025 Бюл. № 30

Адрес для переписки:

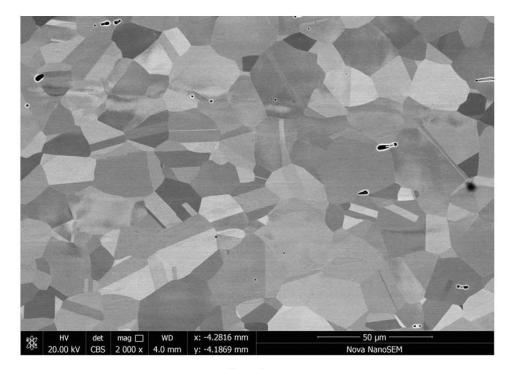
308015, г. Белгород, ул. Победы, 85, НИУ "БелГУ", Крылова Анна Сергеевна

(72) Автор(ы):

Семенюк Анастасия Олеговна (RU), Салищев Геннадий Алексеевич (RU), Степанов Никита Дмитриевич (RU)

(73) Патентообладатель(и):

Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") (RU)


(56) Список документов, цитированных в отчете о поиске: Semenyuk A. Et al., The as-cast precipitation-strengthened N-doped Fe40Mn40Co10Cr10 high-entropy alloys. Materials Letters, Vol.335 (2023), 133756;. RU 2790708 C1, 28.02.2023. CN 112662930 A, 16.04.2021. US 20210222274 A1, 22.07.2021. KR 2020040970 A, 21.04.2020. RU 2731924 C1, 09.09.2020. US 11168386 B2, 09.11.2021.

(54) Высокоэнтропийный сплав с высокой ударной вязкостью при криогенной температуре

(57) Реферат:

Изобретение относится к области частности к разработке металлургии, высокоэнтропийных сплавов, подвергнутых деформационно-термической обработке, и может быть использовано в качестве материала, способного эксплуатироваться при криогенной температуре (-196°C). Высокоэнтропийный сплав $Fe_{40-x}Mn_{40-v}Ni_5Co_{10}Cr_5N_xV_v$, где x=0, y=0; или x = 0.25, y = 0.5; или x = 0.5, y = 1 ат.%. Сплав после деформационно-термической обработки имеет предел текучести 360-700 МПа, предел прочности 905-1170 МПа, пластичность на растяжение 80-120% и ударную вязкость 97-127 Дж/см² при криогенной (-196°C) температуре испытания. 4 ил., 3 пр.

က ∞ 4 ∞ 2

Фиг. 1

<u>ဂ</u>

284873

(51) Int. Cl. **C22C 30/00** (2006.01) C22C 38/00 (2006.01) C22C 22/00 (2006.01)

FEDERAL SERVICE FOR INTELLECTUAL PROPERTY

(12) ABSTRACT OF INVENTION

(52) CPC

C22C 30/00 (2025.08); C22C 38/00 (2025.08); C22C 22/00 (2025.08)

(21)(22) Application: 2025106662, 20.03.2025

(24) Effective date for property rights: 20.03.2025

> Registration date: 21.10.2025

Priority:

(22) Date of filing: 20.03.2025

(45) Date of publication: 21.10.2025 Bull. № 30

Mail address:

308015, g. Belgorod, ul. Pobedy, 85, NIU "BelGU", Krylova Anna Sergeevna

(72) Inventor(s):

Semeniuk Anastasiia Olegovna (RU), Salishchev Gennadii Alekseevich (RU), Stepanov Nikita Dmitrievich (RU)

(73) Proprietor(s):

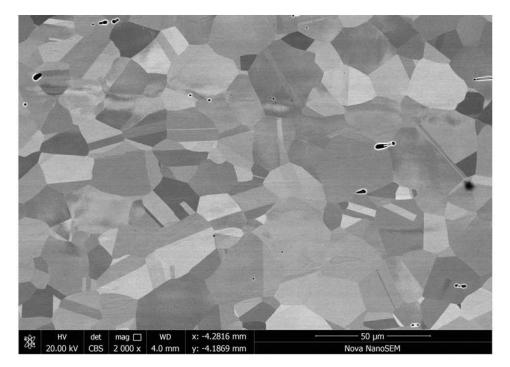
federalnoe gosudarstvennoe avtonomnoe obrazovatelnoe uchrezhdenie vysshego obrazovaniia "Belgorodskii gosudarstvennyi natsionalnyi issledovatelskii universitet" (NIU "BelGU") (RU)

 ∞

ယ

(54) HIGH-ENTROPY ALLOY WITH HIGH IMPACT TOUGHNESS AT CRYOGENIC TEMPERATURES

(57) Abstract:


FIELD: metallurgy.

SUBSTANCE: invention can be used as a material capable of being operated at cryogenic temperatures (-196°C). High-entropy $Fe_{40-x}Mn_{40-y}Ni_5Co_{10}Cr_5N_xV_y$, where x = 0, y = 0; or x = 0.25, y = 0.5; or x = 0.5, y = 1 at.%.

EFFECT: after deformation and heat treatment, the alloy has a yield strength of 360-700 MPa, a tensile strength of 905-1170 MPa, a tensile elongation of 80-120% and an impact toughness of 97-127 J/cm² at cryogenic (-196°C) test temperature. 1 cl, 4 dwg, 3 ex

4

 ∞

Фиг. 1

<u>ဂ</u>

284873

Предлагаемое изобретение относится к области металлургии, в частности к разработке высокоэнтропийных сплавов, подвергнутых деформационно-термической обработке. Сплав, на основе элементов Fe-Mn-Ni-Co-Cr-N-V после прокатки при комнатной температуре и последующего отжига имеет комбинацию высокой прочности, пластичности и ударной вязкости, и может быть использован в качестве материала, способного эксплуатироваться при криогенной температуре (-196°C).

Быстрые темпы развития Арктики, а именно добыча и транспортировка сжиженного природного газа (СПГ) создают предпосылки к созданию новых материалов, способных работать при низких температурах. Сферы применения таких материалов обширны: ледоколы и трубопровод, подводные добывающие комплексы, сосуды для хранения и транспортировки СПГ, а также ракетная и космическая техника. Одними из перспективных материалов на настоящий момент являются высокоэнтропийные сплавы (ВЭСы). В отличии от традиционных сплавов, где в качестве основы берется один элемент, в ВЭСах все элементы находятся в равных или близких к равным пропорциях. Уже были получены сплавы с улучшенными механическими свойствами, такими как высокая твердость, износостойкость, высокотемпературная прочность, коррозионная стойкость, хорошая низкотемпературная прочность и ударная вязкость.

В настоящее время, одной из наиболее перспективных для конструкционного применения систем является Co-Cr-Fe-Mn-Ni. Разработанный сплав CoCrFeMnNi [Cantor et al. Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering A, 2004, v. 375–377, p. 213–218] имел гранецентрированную кубическую (ГЦК) структуру, высокую пластичность, а при снижении температуры испытания до -196°C отмечались повышения всех механических характеристик, что позволяет его рассматривать его в качестве криогенного сплава. Однако на ряду с достоинствами сплав обладал рядом недостатков: высокая стоимость и низкая прочность при комнатной температуре. При помощи модификации состава и снижения концентраций дорогостоящих элементов удалось достичь сопоставимых свойств, но значительно снизить итоговую стоимость сплава [Deng Y. et al. Design of a twinning-induced plasticity high entropy alloy //Acta Materialia. – 2015. – Т. 94. – С. 124-133.]. Проведение деформационно-термической обработки способствовало повышению механических свойств, которые увеличивались при снижении температуры [Otto et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater, 2013, v. 61, p. 5743-5755].

Другим способом улучшить прочность является легирование элементами внедрения. Так добавка углерода к сплаву CoCrFeMnNi привела к значительному увеличению прочности [Klimova et al. Effect of carbon on cryogenic tensile behavior of CoCrFeMnNi-type high entropy alloys, J. Alloys Compd, 2019, v. 811, 152000]. Добавление азота, в качестве легирующего элемента способствовало еще большему упрочнению прочности [Klimova et al. Effect of nitrogen on mechanical properties of CoCrFeMnNi high entropy alloy at room and cryogenic temperatures J. Alloys Compd, 2020, v. 849, 156633]. Добавление азота так же эффективно сказывается при легировании сплава Fe40Mn40Co10Cr10 [Semenyuk A. et al. Effect of nitrogen doping on the structure and mechanical properties of the Fe40Mn40Cr10Co10 high-entropy alloy //Metals. − 2022. − T. 12. − №. 10. − C. 1599] позволяя достичь высоких показателей прочности и пластичности при комнатной температуре. В патенте RU 2790708 C1 (дата публикации 28.02.2023) сообщается, что в сплаве the Fe38Mn40Cr10Co10N2 за счет деформационно-термической обработки удается достичь: предела прочности 943-1103 МПа, предела текучести 644-900 МПа и пластичности при растяжении при комнатной температуре 35-51%. В патенте KR101888299B1 (дата

публикации 10.10.2017) сообщают, что добавление V к высокоэнтропийному сплаву на основе системы Co-Cr-Fe-Mn-Ni приводит к значительному увеличению механических характеристик, как при комнатной температуре испытания, так и при криогенной. В патенте CN107760963A (дата публикации 06.03.2018) сообщалось о добавлении азота к сплаву FeCoCrNiMn. За счет легирования удалось значительно повысить механические свойства и достичь предела прочности 893 МПа и пластичности 46% при комнатной температуре испытания.

Тем не менее добавление большого количества азота (выше предельной растворимости) может привести к охрупчиванию материала, что давно известно для аустенитных сталей [Vogt J. B., Messai A., Foct J. Cleavage fracture of austenite induced by nitrogen supersaturation //Scripta Metallurgica et Materialia;(United States). − 1994. − Т. 31. − №. 5]. Для эффективного упрочнения используют совместное легирование азотом и элементом, который будет его связывать в частицы. Например, в работе [Semenyuk A., Zherebtsov S., Stepanov N. The as-cast precipitation-strengthened N-doped Fe40Mn40Co10Cr10 high-entropy alloys //Materials Letters. − 2023. − Т. 335. − С. 133756] предлагали добавлять азот и ванадий в соотношении 1:2 для выделения стабильных нитридов, что положительно сказывалось на механических свойствах. Однако было отмечено снижение пластичности.

Наиболее близким аналогом является высокоэнтропийный сплав, раскрытый в Semenyuk A. Et al., The as-cast precipitation-strengthened N-doped Fe40Mn40Co10Cr10 highentropy alloys. Materials Letters, Vol.335 (2023), 133756, найдено 21.08.2025 online https:// www.sciencedirect.com/science/article/pii/S0167577X22021115 /1/». В настоящей работе в качестве исходного материала основы был выбран сплав $Fe_{40}Mn_{40}Co_{10}Cr_{10}$ с измененным составом: а именно содержание хрома было снижено до 5 ат. % для подавления σ -фазы, приводящей к охрупчиванию.

Недостатками данного способа являются низкие механические свойства, которые не удовлетворяют требованиям для применения в криогенных условиях, а также отсутствие в составе никеля, что, согласно литературным данным, способствует повышению ударной вязкости.

Технической задачей изобретения является разработка высокоэнтропийного сплава системы Fe-Mn-Ni-Co-Cr-N-V, который после деформационно-термической обработки обладает сочетанием высокой прочности, пластичности и ударной вязкости при криогенной температуре (-196°C).

Технический результат - заключается в получении сплава, который после деформационно-термической обработки имел предел текучести в интервале 360 -700 МПа, предел прочности в интервале 905-1170 МПа, пластичность на растяжение 80-120 % и ударную вязкость в интервале 97-127 Дж/см 2 при криогенной (-196°C) температуре испытания.

Технический результат достигается за счет создания сплава с соотношением элементов $Fe_{40-x}Mn_{40-y}Ni_5Co_{10}Cr_5N_xV_y$, где x=0, y=0; или x=0,25, y=0,5; или x=0,5, y=1 ат.%, после деформационно-термической обработки в котором достигаются высокие механические показатели при криогенной температуре испытания.

Изобретение поясняется фигурами:

30

40

- фиг. 1. Микроструктура сплава $Fe_{40}Mn_{40}Ni_5Co_{10}Cr_5$ после деформационнотермической обработки, заключающейся в прокатке до степени деформации 80% и последующего отжига при температуре $950^{\circ}C$ в течении 1 часа.
 - фиг. 2. Микроструктура сплава $Fe_{39.75}Mn_{39.5}Ni_5Co_{10}Cr_5N_{0.25}V_{0.5}$ после деформационно-

термической обработки, заключающейся в прокатке до степени деформации 80% и последующего отжига при температуре 950°C в течении 1 часа.

- фиг. 3. Микроструктура сплава $Fe_{39.5}Mn_{39}Ni_5Co_{10}Cr_5N_{0.5}V_1$ после деформационнотермической обработки, заключающейся в прокатке до степени деформации 80% и последующего отжига при температуре $950^{\circ}C$ в течении 1 часа.
- фиг. 4. Таблица 1. Значения механических свойств сплавов системы $Fe_{40-x}Mn_{40-y}Ni_5Co_{10}Cr_5N_xV_y$, где где x=0, y=0; или x=0,25, y=0,5; или x=0,5, y=1 ат.%. и некоторых других криогенных сталей.

Пример 1.

10

Сплав $Fe_{40}Mn_{40}Ni_5Co_{10}Cr_5N_xV_y$, где x=0; y=0, получают методом вакуумно-дугового переплава с составом элементов, вес. %: 40,075 железа, 39,424 марганца, 10,573 кобальта, 4,664 хрома и 5,265 никеля. Сплав переплавляют не менее 5 раз для получения более однородного распределения элементов.

После вакуумно-дугового переплава сплав подвергают холодной прокатке на прокатном станке Юмо до степени деформации 80%. После прокатки образцы отжигают в муфельной печи Nabertherm при температуре 950°С в течение 1 часа.

Механические испытания на растяжение полученных сплавов проводят на универсальной электромеханической испытательной машине Instron 5882 при комнатной температуре в соответствии с ГОСТ 1497-84 4 (ИСО 6892-84, СТ СЭВ 471-88) «Металлы. Методы испытаний на растяжение». Испытания на ударную вязкость проводили на маятниковом копре Instron SI-1M в соответствии с ГОСТ 9454-78. Исследования микроструктуры сплавов проводят на растровом (сканирующем) электронном микроскопе Quanta 600 FEG.

Полученный сплав обладает однофазной структурой с размером зерен до 20 мкм, предел прочности сплава составляет 905 МПа, предел текучести 360 МПа, пластичность при растяжении до разрушения составляет 120% и ударная вязкость 126 Дж/см² при криогенной температуре испытания.

Пример 2.

30

40

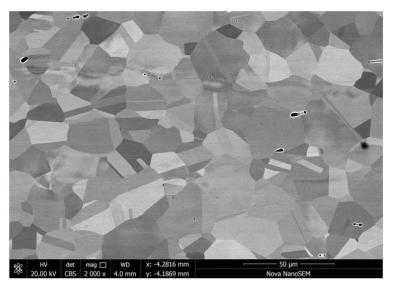
Сплав $Fe_{40}Mn_{40}Ni_5Co_{10}Cr_5N_xV_y$, полученный по примеру 1, где x=0,25; y=0,5, c составом элементов, вес. %: 39,913 железа, 39,018 марганца, 10,596 кобальта, 4,675 хрома, 5,277 никеля, 0,063 азота и 0,458 ванадия.

Полученный сплав обладает двухфазной структурой: матричные ГЦК зерна, средний размер которых составляет 4,5 мкм и нитридные частицы, среднего размера 200 нм. После механических испытаний при криогенной температуре предел прочности сплава составляет 1070 МПа, предел текучести 575 МПа, пластичность при растяжении до разрушения составляет 100% и ударная вязкость $127\ Дж/см^2$.

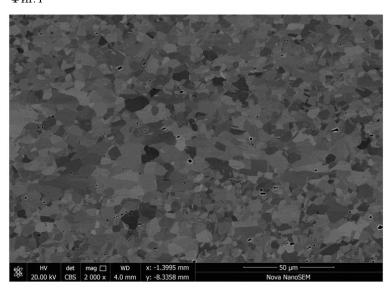
Пример 3.

Сплав $Fe_{40}Mn_{40}Ni_5Co_{10}Cr_5N_xV_y$, полученный по примеру 1, где x=0.5; y=1 с составом элементов, вес. %: 39,751 железа, 38,611 марганца, 10,62 кобальта, 4,685 хрома и 5,288 никеля, 0,126 азота и 0,918 ванадия.

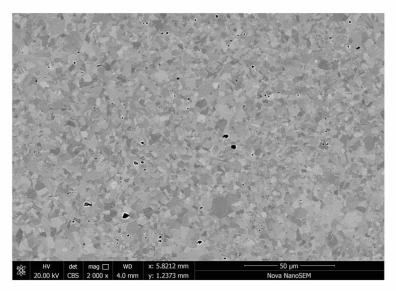
Полученный сплав обладает двухфазной структурой: матричные ГЦК зерна, размером 5 мкм и нитридные частицы, размером 400 нм. Сплав обладает пределом прочности 1170 МПа, пределом текучести 700 МПа, пластичностью при растяжении до разрушения 80% и ударной вязкостью 97 Дж/см² при криогенной температуре.


Приведенные примеры подтверждают, что заявленный технический результат достигнут – сплав $Fe_{40-x}Mn_{40-y}Ni_5Co_{10}Cr_5N_xV_y$, где $x=0,\,y=0$; или $x=0,25,\,y=0,5$; или

RU 2848737 C1


 $x=0,5,\ y=1\ at.\%$. после деформационно-термической обработки при криогенной температуре испытания имел предел текучести в интервале 360 -700 МПа, предел прочности в интервале 905 – 1170 МПа, пластичность на растяжение 80 - 120 % и ударную вязкость в интервале 97- 127 Дж/см 2 .

(57) Формула изобретения


Высокоэнтропийный сплав $Fe_{40-x}Mn_{40-y}Ni_5Co_{10}Cr_5N_xV_y$, где x=0, y=0; или x=0,25, y=0,5; или x=0,5, y=1 ат.%.

Фиг. 1

Фиг.2

Фиг.3

Сплав	σ _{0,2} , МПа	σв, МПа	δ, %	Ударная вязкость,
				Дж/см²
Fe40Mn40Ni5Co10Cr5	360	905	120	126
Fe _{39.75} Mn _{39.5} Ni ₅ Co ₁₀ Cr ₅ N _{0.25} V _{0.5}	575	1070	100	127
Fe39.5Mn39Ni5Co10Cr5N0.5V1	700	1170	80	97
OH6A	735	880	22	90
ОН9А	830	980	26	100
AISI 304	240	1300	40	90
Х14Г14Н3Т	400	1420	41	23
03Х20Н16АГ6	800	1250	32	120
10X18H10T (аналог AISI 321)	350	600	40	150

Фиг. 4